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ABSTRACT 
 
A technique for real-time, wide-area differential 
kinematic positioning at the decimeter level has been 
tested with data from GPS stations in Europe and the 
USA, streamed in real time over the Internet by various 
organizations using the protocol known as NTRIP 
(Network Transport of RTCM via Internet Protocol).  
With the technique presented here, implemented in 
navigation software developed by the author in 
cooperation with personnel at NSWC, Dahlgren Division, 
it is possible, when used in differential navigation mode, 
to estimate corrections to the GPS broadcast ephemerides 
in real-time, as part of the navigation solution.  
Alternatively, more precise orbits can be used, such as the 
predicted Ultra-rapid IGS orbits (or IGU orbits), that are 
updated every few hours, and can be downloaded by 
anonymous FTP from IGS data repositories such as the 
CDDIS at NASA’s Goddard Space Flight Center.  
For this study, 1 Hz data from four stations, three in Spain 
and one in Portugal, have been used. These stations are 
separated by distances between 412 and 630 km, and their 
coordinates are precisely known in the EUREF frame. 
The data consists of the L1 and L2 carrier phase and 
pseudo-range observables from the station receivers, and 
the orbit information in the GPS Navigation Message. 
During the test, a station in Madrid, at the center of the 
network, was positioned kinematically relative to the 
other three, so the results could be compared to the 
precise fixed coordinates of the site, used as “truth”. 
Comparing results obtained with the precise predicted 
IGS orbits and the uncorrected broadcast orbits shows the 

errors using the latter to be much larger than with the IGS 
orbits. On the other hand, the results obtained with the 
IGS orbits, and those obtained with the broadcast orbits 
corrected in real time during the navigation solution, are 
quite similar, with the instantaneous kinematic 
coordinates differing from their “truth” values at the 10 
cm level, after the initial period of convergence of the 
navigation Kalman filter. 
 
 
INTRODUCTION  
 
 
Motivation. Organizations responsible for wide-area 
SBAS (Satellite Base Augmentation Systems) and CORS 
(Continuously Operating Reference Stations) are looking 
for practical ways to add support for precise, decimeter-
level, real-time navigation, to their core services in 
support of reliable meter-level navigation for civil 
aviation, or cm-level static positioning in post-processing 
for surveyors. Techniques such as the one presented here 
would enable wide-area augmentation users to do high-
accuracy navigation in real time, in isolated, inaccessible, 
or remote regions. They could also make this type of 
service more generally available in developing countries, 
where the installation and operation of dense networks 
over large areas may be financially unfeasible. They can 
make it possible to carry out, for example, precise 
topographic surveys with airborne lidar or Interferometric 
SAR (INSAR) over vast expanses of rugged or totally 
inaccessible terrain, where it would be impractical or 
impossible to install and operate a dense network of land-
based reference receivers. 
For precise navigation, it is necessary to correct the data 
from Global Navigation Satellite Systems (GNSS) such as 
GPS, GLONASS, or GALILEO, for tropospheric 
refraction, either with corrections transmitted by the 
operators of the network, as with the Virtual Reference 
Stations (VRS) approach, or else estimated from the 
receiver data as extra unknowns in the navigation 
solution, as is the case here. And either to use precise 
ionospheric corrections from a regional or local network 



to fix carrier-phase ambiguities [1], or if such are not 
available, to estimate as real-valued unknowns (float) the 
corresponding biases in Lc, the ion-free combination of 
the L1 and L2 carrier phases, e.g. [2], [3]. 
It is also possible to use the network’s receiver data to 
estimate corrections to the broadcast orbits and achieve 
with them a level of precision approaching that obtained 
with precise orbits such as those produced by the 
International GNSS Service (IGS). To estimate these orbit 
corrections, one can use a simple orbit perturbation 
model, based on analytical solutions of Hill’s linearized 
dynamic equations [4], avoiding the need for a CPU-
intensive numerical orbit integrator. Based on this simple 
model one can implement a reduced-dynamics orbit 
determination procedure to estimate six orbit states and 
three small unknown stochastic accelerations for each 
satellite in view [5].  
One limitation of this approach, common to all long-
baseline procedures, is the time it takes for the navigation 
Kalman filter solution to converge and produce precise 
results. Particularly when the residual zenith delay and 
also the ion-free carrier phase combination biases are 
estimated (“floating the ambiguities”). Several ways of 
mitigating this important practical problem have been 
proposed over the years, e.g. [6]. 
 
GNSS data streaming over the Internet, and the 
NTRIP protocol. The access in real time to GNSS data 
streamed over the Internet has grown very quickly in the 
last few years, whether it is free of charge, as provided by 
governmental, academic, and not-for profit organizations 
from many countries, or as a paid service by commercial 
firms. As a result of this, now it is possible for practically 
anyone with a fast Internet connection, a reasonably fast 
PC, and the appropriate software, to download and 
process data from receivers in sites situated all over the 
world that broadcast more or less continuously in support 
of real time surveying, navigation, meteorology, etc. This 
has been helpful to users of precise navigation and to 
weather services, and has provided a world-wide test-bed 
for developers of real-time GNSS navigation techniques. 
In this way, organizations providing freely available 
Internet data streams are having a positive influence in the 
improvement and diversification of the uses of GNSS in 
engineering, science, commerce, and in daily life. 
One of the main factors behind this very rapid expansion 
has been the adoption of the Network Transport of RTCM 
over the Internet Protocol (NTRIP) [7], [8], [9], [10] 
which was developed for the Radio Technical 
Commission for Maritime Services (RTCM) by a group 
of GNSS vendors. NTRIP Version 1.0 became an RTCM 
standard in September of 2004. And as of this writing, 
NTRIP Version 2 has reached the testing stage. This 
Internet transport protocol facilitates the access to global 
GNSS data in real time.  

NTRIP can be used to send data with RTCM Versions 2.x 
and Version 3, and also other kinds of data in other 
formats, such as RINEX. 
NTRIP is a subset of the Hypertext Transfer Protocol 
(HTTP), so it uses the Internet Transfer Control Protocol 
(TCP). With NTRIP and the related data collection and 
distribution infrastructure, it is possible to disseminate 
hundreds of streams simultaneously to thousands of 
clients distributed all over the world.  
NTRIP is used today in a variety of commercial 
equipment and software applications: RTK with base 
station and rover receivers, PDA’s and mobile phones 
with integrated GPS receivers, etc. NTRIP data can be 
streamed over wire, optical fiber, radio link, etc. 
As explained in the documentation at the BKG Web site, 
the NTRIP system consists of four major components: 
(1) NTRIP Sources of GNSS data fed into the system. 
These are, primarily, the GNSS receivers that provide 
observations or generate RTK correction data. 
(2) NTRIP Servers that read data from an NTRIP Source 
(i.e., a receiver) and send them to an NTRIP Caster. 
(3) NTRIP Casters that split incoming data from NTRIP 
Servers to send it simultaneously to many clients 
connected to it.  
(4) NTRIP Clients are what stationary or mobile users 
need to access the streamed GNSS data.  
Each client chooses a specific NTRIP Source by its ID 
from an NTRIP Caster. For this, NTRIP includes a Source 
Table maintained by the NTRIP Caster, describing the 
content (data rate, RTCM format version, etc) and the 
Internet ID of any GNSS data stream available. 
Information, documentation [11], and NTRIP-related 
software can be downloaded from the Bundesamt fuer 
Kartographie und Geodaesie (BKG), in Frankfurt:  
http://igs.bkg.bund.de/index_ntrip.htm  
Users can get from there free NTRIP-related software. 
For this work, the author has used the MS Windows 
version of BKG’s client software BNC Version 1.5 to 
receive NTRIP streams. (There are LINUX and Windows 
versions.) 

 
 
Figure 1. BKG’s Map of world-wide sources of NTRIP 
streams, as of 11 September 2008. Not all streams are 
publicly available 
 



The map in Figure 1 shows the current locations of many 
stream sources available through BKG and associated 
organizations. As of this writing, 1 Hz GPS data is 
available from many of them. However, there are no 
guarantees that any particular stream will be available at 
any given time.  
Figure 2 shows one of several dense regional networks 
whose data are freely accessible on the Internet. This is 
the Red GNSS de Castilla y Leon, in North and Central 
Spain, operated by the Instituto de Tecnologia Agraria de 
Castilla y Leon (ITACyl).  
In the USA, NOAA’s NGS is running a test network of 
three stations in the Chesapeake area [10, ib.], not far 
from the author’s home, who has also tested the real-time 
software with their data. 
 

 
 
Figure 2. GNSS network of Castilla-Leon. It covers a 
region of about 450 km by 350 km. (Obtained from 
http://gnss.itacyl.es/). 
 
In addition to GPS and GLONASS data (L1 and L2 
pseudo-range,carrier-phase, Doppler, signal to noise 
ratios, etc.), some sites also stream precise predicted 
GNSS orbits from the IGS (ultra-rapid) as well as GNSS 
navigation data such as broadcast orbits, clock 
corrections, etc. There are near-future plans to transmit 
precise clock corrections to allow users to operate also in 
precise point positioning mode. 
From more traditional sources, such as the on-line data 
and information repositories of the CDDIS at NASA 
Goddard Space Flight Center, users can, during a real-
time navigation session, download files with the latest 
six-hourly update of the ultra-rapid orbits, and also the 
“hourly” RINEX navigation file, which is updated every 
hour or so with the most recent GPS Navigation Message 
data received in near-real time from GNSS sites around 
the world. 
 

Data Latency. The delay in transmission of data 
streamed from a GNSS receiver to a user receiving the 
stream (which follows a route over the Internet from the 
receiver to an NTRIP caster server, and from there to the 
user) is usually well below 10 seconds. Data from a fixed 
land receiver is highly predictable for up to 20 or 30 
seconds. So delayed observations can be predicted by the 
user’s navigation software, with little loss of precision in 
the results, by fitting a parabola to the last three 
observations received, computing the value of the 
parabola at the epoch of the present roving receiver 
measurements, and using this value in lieu of the actual 
data. Most of the time the data latency is well below 10 
seconds [8, ib.], [9, ib.], so it can be taken care of in this 
way. 
 
 
THE PRECISE POSITIONING TECHNIQUE 
 
Software. The GPS real-time navigation software used in 
this study has been developed by the author for a project 
of the US Navy [5, ib.], and it is derived from the author’s 
own post-processing software “IT” (“Interferometric 
Translocation”), with which it shares a number of 
features, such as its use in either differential or in point-
positioning modes. Both the real-time and the post-
processing versions of “IT” have been used in the present 
work. 
The navigation technique implemented is based on ideas 
developed over the last fifty years, first for the geodetic 
positioning of terrestrial tracking sites and for 
determining the orbits of artificial satellites, and later 
adapted by the author and others [2, ib.], [3, ib.], [12], 
[13], [14], [15], for  kinematic solutions.  
The unknowns, or error states estimated with the 
navigation Kalman filter include, besides the position of 
the roving receiver and of some of the fixed stations (in 
differential solutions), also a zenith delay per receiver, the 
biases in the ion-free linear combination of L1 and L2 
carrier phases due to the ambiguities, satellite clock errors 
(in some solutions), and the orbit parameters of each GPS 
satellite: three initial position and three initial velocity 
components, and three random, piece-wise constant 
residual accelerations, using the reduced-dynamics 
approach [16].  
The orbit part of the solution is explained in this section. 
Its main characteristics are: the use of analytical orbit 
perturbations instead of a numerical orbit integrator, 
greatly reducing the computing overhead, and the use of a 
pseudo-epoch state formulation, which has a unit 
transition sub-matrix, in line with the other error states, 
which have either “white noise”, constant, or random-
walk dynamics, all chosen to save computing time,  
The real-time program implements only a Kalman filter 
step, which in the off-line version is followed by a 
smoother step. In both versions, the navigation Kalman 
filter is updated once every minute if the receiver data rate 



is at least one epoch every five seconds, and every two 
minutes, if slower. Instantaneous and compressed data are  
used in the updates, to assimilate all the data [12, ib.] 
In real time, at epochs between filter updates, the values 
of the filter estimates of the Lc biases, zenith delays, and 
(when included in the solution) of the orbit errors, are 
extrapolated to the epoch of the present data with 
parabolas fitted to their values from the three previous 
filter updates. The data are corrected with these 
extrapolated values, and are used to find the position of 
the rover. This is done solving for corrections to the 
nominal x, y, z coordinates (previously estimated with the 
pseudo-range data) as the only unknowns in a small linear 
least squares solution. The points of the vehicle trajectory 
are determined at each epoch, the whole process repeating 
with, and being paced by, the successive arrival of new 
data. (The corresponding operation in the off-line version 
involves interpolating between the two consecutive 
updates bracketing the epoch of the data; this is done after 
the filter and the smoother steps, to obtain the full-rate 
kinematic solution in a final step.) 
 
The Adjustment of the Broadcast Orbits: 
 
Main Navigation Kalman filter updates. Updating a 
Kalman filter involves three steps [17]: 
(I) Deterministic update: the full state vector is multiplied 
by its transition matrix, and the covariance matrix of this 
vector is pre- and post-multiplied by that matrix. The 
dimensions of the state vector and the covariance matrix, 
in precise solutions, can be in the hundreds [2, ib.], and 
the vector and matrix products just described could mean 
a heavy computing load that slows down calculations, 
something undesirable in a real-time procedure. To avoid 
this, the dynamics of the various error states have been 
chosen as: constants, random walks, or white noise, so the 
transition matrix is diagonal, and all diagonal elements 
have values that are either 0 or 1. Multiplying by this 
matrix means either doing nothing or zeroing some state 
vector components and the corresponding columns and 
rows of the covariance matrix. 
 (II) Stochastic update: the covariance matrix of the 
system noise is added to the state covariance matrix after 
step (I). In the navigation filter, as implemented in the 
software, the system noise covariance matrix is diagonal, 
except for several small 6x6 blocks along the main 
diagonal, one for each satellite present in the solution. 
(III) Data update: All data not rejected during pre-
processing are assimilated in the solution. This step 
requires computing the coefficients of the error states, or 
“partials”, to form the observation equations matrix.  
Because the models of the error state dynamics have been 
chosen so as to minimize steps (I) and (II), the calculation 
of those coefficients makes this final step the most time-
consuming of all the three update stages. 
The filter updates made during the differential real-time 
solution discussed in the next section, with three baselines 

(from the rover to three fixed receivers), estimating all Lc 
biases, four refraction zenith delay corrections, and 102 
satellite estates, plus the three instantaneous coordinates 
of the rover, was about 0.12 seconds, using the 1.7 MHz 
laptop computer described in the following section. Those 
filter updates were made once per minute. The 
instantaneous position solution at every epoch, a 
considerably smaller calculation, took about 0.02 seconds, 
and both took much less than the 1 second updates of the 
incoming data.  
 
Mathematical description: 
 
(a) Hill’s perturbation differential equations. The 
presence of small errors in the known initial position and 
velocity of a satellite, and of small accelerations not taken 
into account, or modeled improperly, when calculating its 
orbit, or ephemerides, will result in an erroneous 
computed trajectory. The differences in speed and 
velocity between the true and the computed orbit 
generally vary quite gradually and tend to be periodic, 
with a fundamental period equal to the orbit period.  For 
nearly circular orbits with semi-major axes of some 4 
terrestrial radii, such as those of GPS and other GNSS 
satellites, the orbit errors can be described with relatively 
simple analytical expressions. Probably the simplest are 
solutions of Hill’s differential equations [1, ib.] 
These equations assume that the only force acting on the 
satellite is that of the Earth’s gravity field, that this field is 
that of a point mass at the Earth’s center, which is also the 
origin of coordinates, about which the satellite follows a 
circular orbit at constant speed; that a system of 
coordinates is used where the x axis always points to the 
satellite, the y axis is parallel to the velocity vector, and 
therefore perpendicular to x, and the z axis is 
perpendicular to the plane of the orbit (defined by the 
satellite position and velocity vectors or, equivalently, by 
the x, y axes), and forms a right-handed triad with the 
other two.  So this is a rotating frame of Cartesian 
coordinates that turns within the orbit plane with the same 
angular frequency ω as the satellite orbit. This orbit 
angular frequency is, by Kepler’s 3rd Law: 

ω = (GME/as
3/2)    (1) 

Here G = universal gravitational constant, ME = Earth’s 
mass, as = (mean) semi-major axis of the satellite orbit. 

Hill’s equations are obtained by linearizing Newton’s 
Second Law of motion: acceleration = force/mass, 
because even with the much simplified gravity field, the 
acceleration of the satellite is a non-linear function of 
position (inverse of distance squared). Linearized 
differential equations are often used to describe small 
perturbations in the solutions of nonlinear equations. Here 
those small perturbations (small compared to the radius 
and velocity of the orbit), are the orbit errors caused by 



unavoidable small errors in the initial conditions and in 
the force models used to calculate the ephemerides. Hill 
used his equations for calculating the orbit of the Moon. 
These days they are used to plan spacecraft rendezvous 
maneuvers and satellite station keeping in “formation 
flying”. Also for precise orbit determination [18], and 
GNSS navigation [19], [20].To introduce the equations, 
let x, y, z be the orbital perturbations in the radial, along, 
and across directions. These are Hill’s differential 
equations: 

x”(t) - 2ωy’(t) - 3ω2x(t) = fx  (2a) 

y”(t) + 2ωx’(t) = fy   (2b) 

z”(t) + ω2z(t) = fz    (2c) 

where fx, fy, fz are perturbing accelerations along the x, y, 
z axes, and b’(t) and b”(t) are the first and second time 
derivatives of function b(t).  

(b) The analytical solution. Hilll’s equations have the 
following unforced solution, where xo, yo, zo, x’o, and y’o,  
z’o are the components of initial position and velocity:  

x(t) = x’o sin(ωt)/ω - (3xo+2y’o/ω) cos(ωt) + (4xo+2y’o/ω)
     (3a) 

y(t) = (6xo+4y’o/ω) sin(ωt) + 2x’o/ω cos(ωt) – 
(6ωxo+3y’o)t + (yo-2x’o/ω)   (3b) 

z(t) = zo cos(ωt) + z’o sin(ωt)/ω  (3c) 

x’(t) = x’o cos(ωt) + (3ωxo+2y’o) sin(ωt) (3d) 

y’(t) = (6ωxo+4y’o) cos(ωt) – 2x’o sin(ωt) - (6ωxo+3y’o)
     (3e) 

z’(t)= -zoω sin(ωt) + z’o cos(ωt)   (3f) 

 (c) Observation equation coefficients of the satellite 
unknown error states. Let rs be the unit 3-vector 
pointing from a station to a satellite, and ux, uy, uz be the 
row unit 3-vectors pointing in the radial, along, and across 
direction, respectively. Let J be the 3x3 matrix with rows 
equal to ux, uy, uz. respectively. Define a 3-vector s = Jrs . 
The contribution of the orbit errors (perturbations) to the 
a priori range error dr is the scalar product: dr = sTdr, 
where dr = [x, y, z]T is the 3-vector orbit position error. 
This range error dr is a linear combination of x, y, z, 
themselves linear combinations of xo, yo, zo, x’o, y’o, z’o, 
according to equations (3a-f).  Let the 6-vector hs be the 
vector of the coefficients of the unknown initial satellite 
error states – ordered as follows: zo, yo, xo, z’o, y’o, x’o -- 

in the observation equations of un-differenced range 
measurements (i.e. pseudo-range and phase-range) from a 
station to a satellite. These coefficients can be combined 
with those for other station and satellite pairs to form the 
observation equations of single and double differences. 
To find the observation equation coefficients for the still 
unknown satellite state, first define: 

a = cos(ωt)     (4a) b = 6(sin(ωt)-ωt)   (4b)  

c = 4cos(ωt) (4c) d = sin(ωt)/ω         (4d) 

e = 4ω sin(ωt)-3t (4e) f = 2/ω (1-cos(ωt)) (4f) 

g = −f   (4g) h = d      (4h) 

Finally, using equations (4a-h), one arrives to the 
following observation equation coefficients for the six 
error state components of the satellite: 

hs(1) = s(1)a    (5a) 

hs(2) = s(2)    (5b) 

hs(3) = s(2)b + s(3)c   (5c) 

hs(4) = s(1)d    (5d) 

hs(5) = s(2)e + s(3)f   (5e) 

hs(6) = s(2)g + s(3)d   (5f) 

Where hs(i) and s(i) are the ith components of vectors hs 
and s, respectively. 
 
(d) The homogeneous and forced solutions and the 
pseudo-epoch state. Equations (3a-f) can be written in 
matrix form as: 

x(t) = F(t-to) xo    (6) 

where x(t) and xo are the satellite 6-vector state at times t 
ad to, respectively, and F is the 6x6 state transition 
matrix between times to and t. The elements of this 
matrix are the coefficients of the elements of xo in 
equations (3a-f). A very useful property of F, in systems 
of linear differential equations with constant coefficients, 
such as Hill’s, can be written as follows: 

F-1(ti-to) F(ti-ti-1) = F-1(ti-1-to)  (7).  

If the forcing accelerations fx, fy, fz in (2a-c) are all zero, 
then the homogenous, or unforced response is given by 
(6), which describes the orbit errors caused only by errors 



in the initial states. But, in general, the acceleration errors 
are not zero. They are caused by both errors in the 
modeled forces, and by un-modeled forces. For GPS 
satellites they are quite small, of the order of 10-8 m/s2. 
If f is the 3-vector with components fx, fy, fz, then the 
complete, forced solution of Hill’s equations is: 

x(t) = F(t-to) xo + ∫to,ti F(t-τ) f(τ) dτ  (8).   

∫to,ti  indicates integration between to and t. 
Let ti-1 and ti be two consecutive epochs in which the filter 
is updated. The time-invariance properties of Hill’s 
equations make it possible to replace to with ti-1 in (8) and 
obtain: 

x(ti) = F(ti-ti-1) x(ti-1)+ ∫ti-1,ti F(ti-τ) f(τ) dτ (9). 

If the pseudo-epoch state is defined as: 

z(ti) = F-1(ti-to) x(ti)   (10), then 

z(ti) =  F-1(ti-to) [F(ti-ti-1) x(ti-1)  + ∫ti-1,ti F(ti-τ) f(τ) dτ] .
   
 
But, according to equation (7), this also can be written as 

z(ti) =   F-1(ti-1-to) x(ti-1) + G(ti)   (11),    where 

G(ti) = F-1(ti-to) ∫ti-1,ti F(ti-τ) f(τ) dτ .  (12). 

But the first term in (11) is z(ti-1). So, finally: 

z(ti) =  z(ti-1) + G(ti)   (13) . 

Equation (13) defines, in matrix form, six scalar 
difference equations that express the dynamics of the orbit 
error. This is the appropriate way to formulate system 
dynamics when working with discrete-time estimators 
such as the navigation Kalman filter. 
When f(t) = 0 (a null 3-vector) for all t, then from (10) it 
follows that x(ti) = F(t-to) z(ti), so z(ti) = xo and the 
pseudo-epoch state becomes identical with the initial 
state, which is a constant vector. In general, f(t) is not 
zero, and the pseudo-epoch state changes value from one 
epoch to the next, unlike a true initial epoch state. 
With this formulation, the system’s transition matrix in 
(13) is the identity matrix. This means that no arithmetic 
operations are required for the deterministic update of the 
satellite states partition of the full state space vector (that 
contains all of the solution unknowns: orbit parameters, 
residual zenith delays, perhaps some site coordinates, and 
the position of the rover), or for the deterministic update 
of the corresponding partition of the filter covariance 
matrix. Instead, most of the update-related arithmetic is 
dedicated to computing the coefficients in the observation 

equations of the satellite states according to (4a-h) and 
(5a-f). This can be done quickly, because the expressions 
involved are sums of low degree polynomials, sines and 
cosines, for which compilers have very efficient in-line 
subroutines. 
 
(e) The stochastic model. The mathematical model for 
the stochastic update of the filter is based on two ideas: 
(1) the forcing accelerations in (2a-c) change very slowly. 
(2) It is most desirable not to have to add new error states 
just to represent those accelerations. The total number of 
satellite states, which equals the number per satellite 
times the number of satellites in the solution, must be kept 
to a minimum, to reduce computing overhead – so as not 
to slow down real-time processing. 
To satisfy (2) above, the author has made the following 
compromise between realism and computing speed: 
(a) The three forcing functions, and therefore the vector f, 
are assumed to stay constant over several filter updates, 
and then switch at the same time to new values. 
(b) The amplitudes of the piece-wise constant forcing 
functions are random numbers with a priori standard 
deviations of 10-8 m/s2. 
(c) The pseudo-epoch states of all satellites have their 
stochastic updates together, and only when the forcing 
functions switch to new values. By trial and error, it has 
been found that 20 minutes is a good interval between 
switches. 
Because of these approximations, the number of error 
states per satellite does not have to be increased, and 
remains at six.  
Let: 

Qs = G Qf G
T     (14) 

Here Qs is a 6x6 sub-matrix representing the increase in 
uncertainty in the pseudo-epoch states of a satellite at 
each of their successive updates. G is no longer as given 
by (12); instead it is: 

G(ti) = F-1(ti-to) ∫tiPrevious,ti F(ti-τ) fc dτ .(15) 

Now fc is a 3-vector with components ax, ay, az , which are 
the constant amplitudes of the accelerations fx, fy, fz in the 
interval tPrevious < t ≤. tι The integration limits in the 
second term are: tPrevious  , the last time the components of 
fc changed values (several filter updates ago), and the 
present update epoch ti, with ti -  tPrevious ~ 20 minutes. The 
elements of the integral of F in (15) are the integrals of 
the time-dependent coefficients of (3a-f), so they are also 
combinations of sines, cosines, and low-degree 
polynomials, and can be calculated quickly. 

Finally, Qf is the diagonal 3x3 covariance matrix: 

Qf = E{f fT}    (16) . 



Summing up: according to equation (13) the deterministic 
filter update is a “do nothing” step (multiplying the 
pseudo-epoch state by a unit matrix). Equations (14), (15) 
and (16) are used in the stochastic update of the 6 pseudo-
epoch states of each satellite, to compute the elements of 
the 6x6 matrix Qs to be added to the covariance matrix of 
the full state vector. This operation has to be repeated as 
many times as there are satellites in the solution. Finally, 
equations (3a-f), (4a-h), and (5a-f) are used to calculate 
the observation equation coefficients (or “partials”) of the 
states of each satellite. 
 
Broadcast ephemerides updates. The parameters of the 
orbits in the GPS Navigation Message are updated every 
two hours on the even hour (regular updates), and 
occasionally a minute before the hour (unscheduled 
updates). When estimating orbit errors, it is not absolutely 
necessary to start using the new orbit parameters every 
time they are updated, unless they are very different from 
the old ones. In that case, the orbit error states must be 
relaxed in the filter during the stochastic step by adding 
system noise in proportion to how much the orbit changes 
when calculated with the new parameters. 
  
Initial satellite state uncertainties. The initial, or a 
priori, uncertainties of the pseudo-epoch states (one 
standard deviation), are the same used in solutions made 
with the post-processing software: position, 4 m, velocity, 
6 mm/s -- these values are per coordinate -- and their 
covariance matrix is diagonal. 
 
 
THE IBERIAN REAL-TIME TEST 
 

 
 
Figure 3. Location of the four sites used in the 
experiment, and length of the baselines from the three 
EUREF “reference stations” to the “rover”, the ITACyl 
site in Madrid. 

The Data. In 28 April 2008, the author conducted a test at 
his home in College Park, Maryland, USA, receiving and 
processing in real-time NTRIP data streamed from four 
sites in the Iberian Peninsula: one in Portugal (GAIA), 
near the city of Porto, and another three in Spain (CREU, 
ALME, and MDRD) located in Cape de Creus, and in the 
cities of Almeria and Madrid, as shown in Figure 3.  
This test lasted five hours; all the data were collected, 
transmitted, received, and processed at 1 Hz. 
Note. In actual applications, the data analysis could be 
split, as in the Virtual Reference Stations (VRS) 
approach, between the network operators and the users, 
with the former calculating correctors with data from their 
network and transmitting them to the users, so these can 
correct their roving receiver data and calculate the precise 
position of their vehicles. But for this test, the data from 
all receivers has been processed in a single, unified 
solution. 
The coordinates of the ITACyl site in Madrid were not 
given in the same terrestrial reference frame as the three 
EUREF sites, so it was positioned relative to them in a 
static differential solution, using observations from a 
different day than that of the test. The solution was made 
with the author’s precise post-processing software “IT”; 
the precision per coordinate should be better than 2 cm. 
The four sites were equipped with the following 
receiver/antenna combinations (each listed next to the 
corresponding station Network IDs): 
  
GAIA: Leica RS500/LEIAT504,  
ALME, CREU: Trimble NetrS/TRM41249.00,  
MDRD: Trimble Netr5/TRM29659.00. 
 

 
 
Figure 4. Data processing flow diagram. 
 
A Real-Time Data Processing System.  
Figure 4 shows the flow diagram of the data processing 
for this experiment, as implemented by the author, at 
home, in an Intel Centrino 1.7 Mhz laptop, with 1 Gb of 
RAM, running Windows XP. All programs, except for 
BNC and tail are written in Fortran, compiled with 
Compaq Visual Fortran (VF) Version 6.6 -- a Fortran 95 
compiler. The data are received from the Internet using 



the NTRIP Client BNC Version 1.5, for Windows, 
distributed by BKG. This program collects all the data 
obtained at any given epoch at those stations whose 
streams it is receiving from an NTRIP caster. It waits for 
data for up to one second before saving those that have 
arrived to an ASCII file, called “ascii.sync” in the 
diagram. (It also saves data in RINEX files, one for each 
station, but those were not used here.) The received data 
accumulates, one epoch at the time, in “ascii.sync”. The 
Microsoft Windows version of the Unix program “tail” 
reads in non-interactive mode (with switch “-f”) the latest 
data records added to this file, and pipes them to the 
standard input of program “feed”. This program also 
receives control messages from the user through 
“usercom” and passes them to the rest of the system, 
providing an interactive interface. Program “feed” then 
converts the GPS measurements saved in “ascii.sync” in a 
format closely related to RTCM, to the RINEX format 
used in the navigation software. It also collects, from the 
geodetic data base of the CDDIS at NASA Goddard, the 
SP3-formmated file with the latest predicted ultra-rapid 
orbits from the IGS, and the latest “hourly” RINEX 
navigation file. Then “feed” passes all this information, 
some directly through a pipe, and some through shared 
files to the navigation software (real-time) “IT”. There 
the data first are preprocessed, and then are analyzed to 
produce the precise real-time kinematic solution. “IT” 
also sends information on the results obtained so far to 
program “graphs”, through a VF “SHARED” file, to be 
plotted on the computer monitor, so the user can have 
some idea of how things are going. The output of “IT” 
contains records with the latest estimated position of the 
rover both in x, y, z EFEC coordinates and Up, East, 
North topocentric coordinates, and their corresponding 
9x9 covariance matrices. It also contains the records of 
the run’s listing: the full history of what happened during 
the data processing. Program “split” receives the standard 
output of “IT”, separates the run listing from the results, 
and saves them in two separate output files. 
 
Results. The test real-time calculations were made with 
GPS orbits taken from the IGS precise predicted ultra-
rapid orbits, downloaded from the CDDIS during the run. 
Only GPS observations were used. Saved in the file 
“ascii.sync”, they were used again later, in two off-line 
runs with the same real-time software, but now using the 
GPS Navigation Message broadcast ephemerides instead 
of the IGS ultra-rapid orbits, first unchanged, and then 
corrected with the procedure described previously.  
Figure 5 shows the comparison of the instantaneous 
kinematic position of MDRD compared to its known 
position. 5(a) is the result with the broadcast ephemerides 
kept fixed in the navigation solution; 5(b) is the solution 
with the broadcast ephemerides corrected (adjusted) in the 
solution; 5(c) is the real-time result, with the predicted 
ultra-rapid IGS orbits, kept fixed in that solution. 

 
 
Figure 5(a) Comparison between the known, or “truth”, 
position of MDRD and the instantaneous position 
estimated with the uncorrected Broadcast Ephemerides. 
The brown symmetric lines show the a posteriori (± RSS) 
or three-dimensional formal precision of the estimated 
position at each epoch. 
 

 
 
Figure 5(b) As in (a), but with the errors in the Broadcast 
Ephemerides corrected in the solution. 
 

 
 
Figure 5(c) As in (a), but using the more precise ultra-
rapid predicted IGS orbits (the actual real-time results). 



The first plot shows a rather large excursion of more than 
half a meter in height, away from the precise coordinates 
of MDRD -- the test’s “truth” -- when using the 
uncorrected broadcast ephemerides. This excursion is also 
in clear disagreement with the size of the “error bars” of 
those position estimates (the two brown lines). The 
second plot shows that a considerable improvement is 
gained by correcting the broadcast orbits in the solution. 
The third plot shows that using the IGS precise predicted 
orbits gives slightly better results than adjusting the 
broadcast orbits. In both Figs. 5(b) and 5(c) the 
discrepancies between the kinematic position and “truth” 
are never larger than twice the formal 1-STD (RSS) error 
bars, and stay mostly within them. 
 
 
The Filter Convergence Problem. Figure 6 shows the 
result of analyzing the same data with the same ultra-
rapid orbits and navigation message file as in the real-
time solution (Fig. 5(c), above). The difference here is 
that this solution was made off-line: it is a post-processed 
solution, using first the navigation filter, as in real time, 
and then a smoother. In this type of solution, all the data 
collected during a session is implicitly used to estimate all 
of the unknowns. So the precision of the estimated rover 
position tends to be equally good at all epochs (the 
smoother algorithm “smoothes out” the precision as a 
function of time). 
 

 
 
Figure 6. Same as Fig. 5(c), but for a post-processed, 
kinematic navigation solution obtained analyzing the data 
with a Kalman filter and a smoother. 
 
The values of nuisance unknowns present in many 
consecutive observations, such as the Lc biases in the 
carrier phase observations of a given satellite, are 
estimated much better with the filter towards the end of a 
period in which that satellite is present. Consequently, the 
precision of the whole solution becomes better towards 
then end of that period. At the beginning of the real-time 
filter run, all error states are poorly known, since such 
knowledge is limited to whatever preliminary information 
might be available about them, usually with large a priori 

uncertainties. As the run progresses, the assimilation of 
ever increasing amounts of data, epoch after epoch, 
contributes more and more information, reducing the 
uncertainties, including those on the instantaneous 
position of the rover, which improves as time goes by.  
This is clearly shown both by the size of the discrepancies 
between kinematic and “truth” position, and by the brown 
RSS lines in the plots. The initial period of large 
discrepancies and of large formal RSS uncertainties in the 
rover’s instantaneous position, is the filter convergence 
period. It is characteristic of filter-only, wide-area, point-
positioning or long-baseline differential solutions, 
including all such real-time kinematic solutions, where it 
can be a limiting problem if precise results are needed 
soon after the start of a session. 
Had one already known, at the beginning of the real-time 
session, the values of the nuisance unknowns (Lc biases, 
etc.) as well as one will know them at the end, after the 
filter has assimilated all the data available, then the initial 
results might have been  as good as the final ones. 
There are several ways of shortening the convergence 
period in real-time, wide-area solutions, but all of them 
require additional information, often of high-quality, and 
not always available, besides the receiver data.  
For example: 
(a) Resolving the carrier-phase ambiguities to remove the 
Lc biases from the ionosphere-free carrier phase linear 
combination, which requires making very precise 
ionospheric corrections to the data [1, ib.] 
(b) Starting at a place of well-known coordinates, and 
conditioning the solution with those coordinates [5 ib.] 
(c)  If the GNSS receiver is on a buoy, ship, or some other 
floating platform, the solution can be conditioned by 
taking advantage of the fact that, after filtering out the 
vertical motion caused by ordinary waves, remaining 
changes in sea surface (and receiver antenna) height are 
due to tides, air pressure changes, wind pile ups, drifting 
eddies, etc., and tend to be quite gradual [6, ib.] 
 
 
Real Time or Post-Processing? When deciding how to 
analyze their GNSS data, users must consider both real-
time processing and post-processing, and choose one of 
them according to what they want to do. If the precise 
results are needed to steer a vehicle, as in precision 
farming, then real-time processing is the only choice. 
However, if what is needed is the very best estimated 
position of the rover that can be obtained from the data, 
and there is no pressing need to get the results during the 
survey, then post-processing is the better option. As 
shown in Fig. 5(c), if the session is long enough to 
acquire sufficient data, post-processing is likely to 
provide uniformly good results without all the additional 
information needed to speed up the convergence of the 
filter in real time. It is also a more robust approach, 
because the data can be processed more than once, in 
somewhat different ways, to find out one that gives the 



best results. It is also more forgiving of operator errors, 
while in real-time solutions everything has to be done 
correctly right away, every time, all the time. While much 
progress has been made over the years in facilitating the 
use and ensuring the success of precise real-time 
navigation solutions, post-processing is by nature more 
precise and reliable. 
Real-time is for users that cannot work in some other 
way, or are sure that getting their results very quickly is 
worth taking a somewhat greater risk. 
 
 
CONCLUSIONS 
 
The rapid increase in recent years in the number of real-
time GNSS Internet data streams available from many 
sites and often free of charge to all those interested in 
using them, is an unprecedented phenomenon that should 
have far-reaching repercussions on the practice of satellite 
positioning. The free GNSS data streams, in particular, 
give developers and inventors access to a test-bed that is 
as large as the whole world. Such ready availability of 
real-time data from so many different places, with very 
different receiver environments, is spurring the fast 
development of navigation and surveying techniques, the 
introduction of new applications of satellite-based 
positioning, and helping more people take advantage of 
them. 
 
Central to these remarkable developments is the adoption 
of a set of common standards for the collection, 
dissemination, and use of the streamed data, of which the 
NTRIP protocol is a very important component. 
 
As shown in this paper, it is possible, with the support of 
a properly designed wide-area GNSS network of 
reference sites, and with an appropriate navigation 
procedure, to achieve decimeter-level precision in real-
time navigation, even hundreds of kilometers away from 
any network station.  
There are precise orbits, such as the IGS predicted ultra-
rapid orbits, that can be downloaded for free over the 
Internet, with anonymous FTP, from sites such as 
NASA’s CDDIS, for use in differential real-time 
positioning.  
It seems also likely that in the near future there will be 
real-time satellite clock corrections available as well, for 
precise real-time point positioning over large areas [21]. 
 
It is possible to get precise differential solutions with just 
the broadcast ephemerides, by using the procedure 
described in this paper. This means that differential 
navigation with the support of a wide-area network of 
land receivers can be quite self-contained, since it is not 
essential to have access to very precise orbits. So the 
technique described here may provide an alternative way 

of doing things, or at least a fall-back option for those 
times when the precise orbits are not available. 
 
Finally, a basic problem with real-time positioning is how 
long it takes to collect the data needed to achieve precise 
results, particularly in kinematic mode. There are ways to 
mitigate this problem (e.g.: resolving phase ambiguities 
with very good ionospheric corrections), but they require 
additional information that sometimes can be hard to get, 
so finding new practical remedies to the convergence 
problem remains an important challenge. 
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